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Abstract The present paper is intended to summariz our “rent knowledge about 
the long-time behaviour of nehwrks of graded response neurons with continuous- 
time dynamics. We demonstrate the workings of our previously developed statistical- 
mechanical approach to continuous-time dynamics by applying it to networks with various 
forms of synaptic organization (leaming rules), and neural composition (neuron-types as 
encoded in gain functions), as well as to networks varying with respect to the ensemble of 
stored data (unbiased and low-activity patterns). We present phase diagrams and compute 
distributions of local fields for a variety of examples. Local field distributions are found 
to deviate from the Gaussian form obtained for stochastic neumns in the wntexi of 
the replica approach. A solution to the low firing rates problem within the framework 
of nets of analogue neurons is also briefly discussed. Finally, the statisticalmechanical 
approach to the analysis of continuowtime dynamics is extended to include effects of 
fast stochastic noise. Detailed-balance solutions are shown to be unique and of canonical 
form, governed by Hamiltonians which exhibit a reciprocity relation between potential- 
dynamics and fuing-rate dynamics: for the potential-dynamics, the Hamiltonian is given 
by the Lyapounw function of the system-expressed in terms of the fuing rates-and it 
generates a Gibbs distribution over fuing-rate space. For the noisy firinerate dynamics, 
the same Lyapounov function-now expressed in terms of neural potentials-generates 
a Gibbs distribution Over the space of these potentials. As a consequence, the firing- 
rate dynamics will freeze in configurations saturating the neural input-xtput relations, 
whenever such saturation levels exist. Both types of stationary distribution are shown to 
exist only under unrealistic assumptions about the noise in the system. 

1. Introduetion 

In previous papers (Kiihn 1990, Kiihn et d 1991), we have provided a general 
statistical mechanical framework for analysing the long-time behaviour of networks of 
graded-response neurons with a deterministic continuous-time dynamics of the form 

v, = L7j(YJUj).  (2) 
In (l), Ci denotes the input capacitance of the ith neuron, R, its trans-membrane 
resistance, U, its postsynaptic potential, and V; its instantaneous output. The input- 
output characteristics of a neuron is encoded in its transfer (gain) function g j  as in (2), 
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rj denoting a gain parameter. The I ,  represent the input from afferent (current) 
sources and the synaptic weights are as usual denoted by .Iij. For our statistical- 
mechanical approach to be applicable, the dynamics (I), (2) must be governed by 
a Lyapounov function, a condition that is satisfied if synapses are symmetric, and if 
neural gain functions are monotonically increasing functions of their argument. 

Networks of graded response neurons with dynamics governed by a set of 
dilkrential RC-charging equations as in (1). (2) were proposed by Hopfield (1984)- 
at that time mainly as supplying further independent evidence for the degree of 
robustness of collective, network-based computation. The (qualitative) statement 
was that ‘networks of graded response neurons have collective properties like those 
of two-state neurons’ (Hopfield 1984). An explicit demonstration of the range of 
validity of the ‘universality principle’ alluded to in that statement may well be the 
strongest motivation for further quantitative studies of networks described by (l), (2), 
as long as a proper description of the dynamics of natural nerve nets is still missing 
or-at best-under debate (see e.g. recent papers by Amit and ’ISodyks (1991a. b), 
or Gerstner and van H e m “  (1992)). 

There are, of course, also a number of speciific points to be advanced in favour of 
(l), (2). One is that the continuoustime dynamics (l), (2) carries some potential for 
the inclusion of neurophysiological detail into formal neural network models, which 
is not available in the standard models using two-state neurons with (stochastic) 
synchronous or asynchronous dynamics. For instance, capacitive input delays and 
transmembrane leakages are explicitly taken into accOunt in (1)-input delays, 
however, certainly not as detailed as the variability of synaptic-dendritic information 
transport would require. Moreover, within a firing-rate description at least, gain 
functions as in (2) can be shown to encode neural behaviour during relative refractory 
periods. Finally, continuous-time dynamics avoids the most obvious shortcomings of 
parallel and asynchronous dynamics with respect to neural modelling: (i) there is no 
need for assuming agents that would enforce global synchrony in the case of parallel 
dynamics; (ii) neurons determine their state strictly in response to their postsynaptic 
potential rather than only when the order of updating is on them, as in asynchronous 
dynamics. 

Alternatively, (l), (2) provide a quantitative description of the dynamics of 
networks of resistively coupled nonlinear amplifiers (Hopfield 1984, Mead 1989), 
in which case the 5 denote output voltages (rather than fining rates) of amplifiers 
with gain functions gj. Such networks have been suggested (Hopfield and Tank 1985, 
Tank and Hopfield 1985, Koch er d 1986) as real-time solvers for hard optimization 
tasks, and a quantitative theoretical understanding of their performance would thus 
be of use as a guide for improving the efficiency of devices of this type. In particular, 
it is now known that finite gain (liie finite temperature in stochastic king networks) 
can be used quite efficiently to control the number of spurious stable states (Fukai 
and Shiino 1990, Waugh er a[ 1990). Tuning gain parameters in analogue systems 
may therefore serve, e.g., as a fast deterministic substitute of simulated annealing- 
much like mean-field annealing (Soukoulis er d 1983, Peterson and Anderson 1987). 
Knowledge of the phase structure of a given setup, i.e. its collective properties, would 
certainly be of help in using this method efficiently, in that it points out ways of 
avoiding spurious attractors or in that it can guarantee, for a given problem, the 
stability of phases of interest in appropriate parameter ranges. 

Dynamical properties of networks of graded-response neurons governed by (I), (2) 
have been investigated by Sompolinsky et al (1988). These authors studied networh 
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with random asymmetric synapses, for which (l), (2) are not governed by a Lyapounov 
function, and found a transition to chaotic behaviour at sufficiently high gains for 
an input-output relation of the form V, = tanh(rUi). More recently, collective 
properties of networks of analogue neurons endowed with Hebb-Hopfield-type 
couplings have been dicussed by various authors. Treves (1990a, b) investigated 
networks of threshold-linear neurons governed by asynchronous stochastic dynamics. 
Stability properties of analogue neuron systems with discrete-time iterated map 
dynamics have been investigated by Marcus and Westervelt (1989), by Marcus et nl 
(1990), and by H e n  (1991). A phase diagram describing the fixed-point structure of 
analogue neurons with hyperbolic-tangent response was obtained by Shuno and Fukai 
(1990) on the basis of a mapping of this particular problem onto a so-called naive 
mean-field theory for Ising spin systems (Bray et al 1986)-an approach, however, 
which is restricted to neurons with g(r) = tanh(r) response. More general transfer 
functions as well as networks with asymmetric couplings can be handled by a cavity- 
type approach recently proposed by the same authors (Shiino and Fukai 1992); for 
an earlier attempt, see also Marcus et al (1990). 

We will not mention nor discuss here recent related work on multi-state neuron 
systems with Ising-, Potts-, Clock- or XY-symmetries and refer the reader to recent 
papers by Mertens et al (1991). BoU6 et a1 (1991) and Gerl et a1 (1992) and to 
references therein. 

The purpose of the present paper is to summarize our current howledge about 
the long-time behaviour of networks of graded-response neurons with continuous- 
time dynamics. In order to set the scene, we shall first (section 2) provide a brief 
description of the statistical-mechanical approach proposed earlier (Kiihn 1990, Kuhn 
ef a1 1991), starting with a soft-neuron version of the Hopfield model (section 3.1), 
thereafter extending it in various ways. In particular, in section 3.4 we w i U  be 
concerned with the effect of network inhomogeneities (mixtures of several neuron 
types and distributions of gain parameters), and self-couplings In section 4 we 
investigate synaptic organizations (learning rules) different from the Hebb-Hopfield 
form (Hopfield 1982); that is, in section 4.1 we shall have a few words to say on low- 
activity low-firing-rates networks. Such networks were recently and independently 
also studied by Amit and nodyks (1991b), so here we will restrict ourselves to results 
which go beyond theirs. Section 4.2 is devoted to a study of networks of analogue 
neurons coupled via pseudo-inverse synapses. In section 5, we study the effects of 
fast stochastic noise on the continuous-time dynamics of networks of graded response 
neurons. Guided by previous approaches, we concentrate on long-time stationary 
states, assuming that they satisfy detailed balance conditions. The nature of the 
corresponding stationary distributions is elucidated, and it is shown that they exist 
only under unrealistic assumptions about the noise in the system. 

2. Statistical mechanics for analogue neurons 

The statistical-mechanical approach to graded-response neurons to be presented 
below is restricted to situations where the dynamics (I), (2) is governed by a 
Lyapounov function. Such is the case, if the synaptic matrix in (1) is symmetric and 
if the neurons have monotone increasing input-output relations. These conditions 
were identified by Cohen and Grossberg (1983) and by Hopfield (1984), and the 
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Lyapounov function was shown to be of the form 
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where G, denotes the integrated inverse input-output relation 

v 
Gi(V) = / g;’(V’)dV’ (4) 

The value of the lower integration limit in (4) is arbitraly. It can be used to 
define the zero of the energy scale in (3). In figure 1, the interaction energy of 
a pair of ferromagnetically coupled neurons with = tanh(rLri) in the subspace 
V, = V, = V is depicted for various values of the gain parameter 7. In terms of (3), 
the dynamics (l), (2) reads 

entailing 

with equality in (6) only at stationary points of (l), (2). The existence of stationary 
points follows from one additional assumption on the gi, namely that they increase, 
for large lUil, not faster than linearly with Vi (Marcus and Westervelt 1989). This 
assumption guarantees that 7fN is bounded from below, so that the dynamical flow 
generated by (l), (2) will always converge to fixed points, which are the global or 
local minima of 7 tN.  

V 

Figure 1. Interaction energy of a pair of neurons with J,, = 1, 1; = 0,  and 
V, = tanh(yCJ;) in the subspace C; = V2 = V for various values of the gain 
parameler y. From top to bottom, we have y = 0.8.1.0,1.2,1.4,1.6, and (broken 
a w e )  y = m. 
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One way of locating these minima is to compute the zero-temperature ( p  + co) 
limit of the free energy 

f N ( P )  = -(PN)-’logTr, e x p [ - p ~ d v ) I  

and to investigate the nature of its stable and metastable phases. This allows us to 
fmd all the attracton of the dynamics (I), (2) which are surrounded by extensive 
energV barriers and, as we shall see, to characterize them macroscopically (Kiihn 
1990, Kiihn er a1 1991). 

In (7), dp( X) denotes an a priori measure on the space of neural output states 
which-pided by the principle of insufficient reason-we take to be uniform (though 
not normalized) on its support, namely the range of gi, and thereby avoid encoding 
hidden assumptions about the system’s behaviour already at the level of this output 
measure. Later on we shall see that (smoothness taken for granted) the support 
of dp(V;:) is all that matters anyway, as long as we are interested only in zero- 
temperature properties of the Gibbs measure generated by 31,. Moreover, the 
analysis of stochastic generalizations of the dynamics (I), (2) below will be seen to 
lend additional support to this ‘natural’ choice. 

If EN is not bounded from below, the statistical-mechanical approach just 
described can nevertheless be used to exhibit and characterize the local minima of 
E N ,  by constraining each \$ integration in (7) to some suitably large compact subset 
of R, i.e. by giving the dp( 4)  in (7) a finite support which may be a proper subset of 
the range of gi. By this device, we ensure that the Lyapounov function is bounded on 
the support of ni dp( y ) ,  hence that (7) exists. Such a strategy will work as long as 
‘HN is, for example, a continuous function of its arguments. More generally, for this 
purpose EN is only required to be of bounded variation on the integration domain. 

Let us note in passing that the input capacitances Ci of the neurons do not enter 
E N  and thus do not affect the free energy. That is, the characteristic capacitive 
input-delays T; = RiC, of individual neurons do not affect the nature or the number 
of fixed points of (l), (2). They must of course be expected to determine the size and 
shape of the basins of attraction, convergence times, the way in which fixed points 
are approached, and other intrinsically dynamic features of the network. Note also 
that self-couplings may appear in the dynamical rule (I), (2) without invalidating the 
statistical-mechanical approach, in contrast to the situation for binary neurons with 
asynchronous stochastic dynamics. 

In what follows, we shall exclusively be concerned with the long-time static 
properties of networks described by (l), (2), i.e. we will have nothing to say about 
the dynamics proper. 

The statistical-mechanical approach just described may at first sight appear Like 
an unnecessary detour. One might, after all, think of searching for minima of EN 
directly among the solutions of the equations 

This alternative, however, has proven to be impractical for at least two reasons. 
Firstly, the tools for solving the N x N-dimensional stability problem associated with 
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(E) were not available in all cases of interest, and secondly (E) generally do not allow 
a satisfactory macroscopic characterization of the relevant minima in terms of order 
parameters. For both types of problems, on the other hand, the arsenal of techniques 
provided by statistical mechanics is able to furnish satisfactoly solutions, that is to 
say, in all cases we have so far explored. Technically, these solutions are provided 
by mean-field techniques of a form introduced by Amit ef ai (1987), albeit modified 
where necessary, in order to account for the continuous nature of our fundamental 
dynamical variables. 

R Kiihn and S Bos 

3. Hebb-Hopfield couplings 

We now proceed to substantiate the above general considerations by studying a 
number of specific examples. We begin by briefly recalling the mean-field theory 
for networks of analogue neurons with Hebb-Hopfield couplings 

designed to store a set of p unbiased binary random patterns t f  E {fl), 1 6 p 6 p. 
Biased patterns will be discussed later on in section 4. 

3.1. Homogeneous networks 

For the time being, we shall take the networks to be homogeneous. That is, 
all neurons are assumed to have the same input-output relation gi = g, with i- 
independent gain parameters yi = y. Moreover we shall take Ri = Ci = 1 in 
suitable units, this latter assumption implying no loss of generality, since the Ci do not 
enter our theory and the Ri can always be absorbed in the gain parameters yi. These 
homogeneity assumptions are mainly adopted here for convenience. Inhomogeneous 
networks will be dealt with later on in section 3.4. The input-output relation gi = g 
need not be specified until it comes to the evaluation of the fixed-point equations for 
the order parameters. 

For networks with synaptic couplings given by (S), the free energy (7) may be 
written 

where we have introduced the overlaps 

and where the integrated inverse input-output relation G as well as a term correcting 
for the absence of self-interactions have been absorbed in the single-site measure 

dp( V )  = dp( V )  exp[-apV2/2 - Py- 'G(  V ) ]  (12) 

with a = p/N.  In the limit of extensively stored patterns (a > 0) the free energy is 
evaluated by the replica method (Amit et a[ 1987). For states which have macroscopic 
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correlations with at most finitely many (s) of the p = (YN stored patterns, one obtains 
in the replica-symmetric approximation, 

+LYi.v2]})) 2 

the double angular brackets denoting a combined average over the finitely many tu  
with which the system is macroscopically correlated, and a Gaussian random variable 
z with zero mean and unit variance. In (13), 

and the mv, qo and q1 must be chosen to satisfy the fixed-point equations 

qo and q1 denoting diagonal and off-diagonal elements of the matrix of Edwards 
Anderson order parameters 

respectively. In (15), [. . .] denotes the 'thermal' average 

where = ( ty);=l ,  and where, using (12), we have introduced 

In order to yield information about the nature of the local and global minima of 31,. 
the averages (16) are to be evaluated in the deterministic P -, 00 limit. In this limit 
we get (K~lhn 1990, Kiihn el al 1991) 

[F(V)le,. = F(Q(€,Z)) (18) 
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Figure 2. Solution of (19). Both, (a) and (b) show the 
intersection of the c w e  g-’(V) with lines of the form 
y(rV+b),eachforthreevaluesofb= b(z)  = C,mv.E”+ 
f i z .  Stable solutions corresponding to minima of H( V )  
are marked by a point. (a) For ~r < 1, the relevant solution 
p is continuous as 6 passes through zero. (b) For > 1, 
the relevant solution jump from P < 0 to $’ > 0 as b 
increases through zero, entai!ing a corresponding jump in the 
local field 0 = ( l /y)g-I(V) as discussed below. 

for any continuous function F ,  where o(<, z )  is the point minimizing H( V ) .  It 
must be determined among the solutions of the transcendental fixed-point equation 

with 

T = a(F - 1) (20) 
on the support of dp; for an illustration, see figure 2. 

For the purpose of a numerical solution of the fixed-point equations (U), it is 
advantageous to rewrite them in terms of the variables my, q1 and C E p(qo - q,), 
so as to get (as p -+ 00) 

t = p ( < , z )  being determined by (19) as before, and T = q l / ( l  - C)2, while 
i. = 1/(1- a. 

Note that up to this point, the theory could be developed in complete generality 
with respect to input-output relations. On a formal level this generality is possible, 
because input-output relations affect only single-site measures in (10)-(15), and not 
terms related to synaptic interactions. 

The limit of finitely many stored patterns is recovered by taking the limit o -L 0 
in (13)-(19). In this limit, the m, alone are sufficient to describe the state of 
the system, and must be chosen to satisfy (1%). The solution f’ of (19) can be 
determined explicitly in this case to yield f’ = g(y E, {”m,), so that the p -+ cn 
limit of (15u) takes the form my = (<”g(yC,<”m,)), the single angular brackets 
denoting an average over the t u  according to their distribution. These equations 
bear a strong formal similarity to those describing the stochastic Hopfield model, 
with the hyperbolic tangent replaced by a general input-output relation, and inverse 
temperature 0 by the gain parameter y. Needless to say, we get a true formal 
equivalence for the choice g(x) = tanh(x). More generally, for input-output 
relations of sigmoidal shape, with lim,,,, = Z!Z~ and g ’ ( r )  < g‘(0) = 1, the 
‘paramagnetic’ null solution will lose local stability as y is increased above yc = 1. 
The ‘phase transition’ at y, may be first or second order, tri- or higher order critical, 
depending on the shape of g in the vicinity of z = 0 (Kuhn 1990, Kiihn er d 1991). 
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3.2. Local field distributions 

Before turning to a discussion of the phase structure in the limit of extensively many 
stored patterns (CY > 0), let us draw the readers' attention to the fact that the mean- 
field theory presented in the previous subsection provides more than just a tool for 
identifying stable stationary states of the network dynamics and for characterizing 
them macroscopically in terms of order parameters. To see this, one notes that the 
order parameters constitute, in fact, aparametrization of the local field distributions 
pertaining to the various types of attractor. In the present subsection we would like 
to demonstrate, in the case of the soft-neuron version of the Hopfield model, how 
such parametrizations can be unfolded, so as to obtain explicit analytic expressions 
for these local field distributions. 

There are at least two reasons why this should be interesting. First and foremost, 
a lo& field 0 translates, via the input-output relation 0 = g(y0), into a neural 
output level (firing rate) f', so that local field distributions can immediately be 
translated into firing-rate distributions. In a biological context it should be noted 
that these distributions are directly accessible to experimental techniques of the 
neurophysiologist+ confrasr to the order parameters m,, C, and q, or, for that 
matter, storage capacities. Thus, local field distributions and the corresponding firing 
rate distributions appear to be far better candidates for providing feedback between 
experimental evidence and theoretical modelling than order parameters. Second, 
as we shall see, the computation of local field distributions can be used to obtain 
significant speed-ups in the numerical solution of the fixed-point equations (19)-(21). 

Our computation of local field distributions starts out from (19). Local field 0 
and firing rate f/ being related through 0 = q(rO), one can rewrite (19) in terms 
of 0 to read 

where, as before, in case of several solutions one has to choose the one minimizing 

as 
follows. Instead of determining 0 ( z )  for given z through (lg'), one proceeds the 
other way round and defines z = z( 0) through 

H ( V )  = H ( g ( y U ) ) .  
From this observation one obtains the 0-distribution for given ( = 

In cases where (19') has multiple solutions, several different 0 will give rise to 
the same z in which case one has to choose that representation which minimizes 
H(g(y0)). The 0 chosen to represent z ( 0 )  in (22) may occasionally jump, 
namely when two minima of H(g(yO)), i.e. two solutions of (19') exchange their 
relative de th much as order parameters do at f i t a d e r  phase transitions. Locally, 
however, 8 ( T i s  smooth and invertible, implying that z = z( 0 )  is continuous and 
differentiable. Hence, knowledge of 

dz 
P(Z)dz = -exp(-z2/2) Jz;; 



840 

allows to obtain 
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x (1 - 7 r 9 Y a ) X m  (23) 

where ~ ( 0 )  = 1 for those 0, for which 0 ( z )  is locally smooth and invertible, 
whereas ~ ( 0 )  = 0 on those intervals across which the solution 0 ( z )  to (1Y)jwnps 
due to the minimality criterion for H ( g ( y 0 ) ) .  Note that r r g ’ ( 7 0 )  < 1 for a 
solution to (19’) that represents a (local) minimum of H ( g ( y U ) ) ,  so that PJo) 
is indeed non-negative. The situation is particularly transparent for input-output 
relations g which are of the typical sigmoid form, i.e. which are odd, and convex for 
positive arguments, thus having maximum slope g‘(z) at I = 0. For such g, one has 
to switch between a (0 < 0) re resentation of z ( U )  to a (0 2 0) representation at 
z = -  E, c”m, I@, where 8 solves 

0 = rg(r0) (24) 

(see figure 2). Thus there will be a jump in the solution and a corresponding gap 
in P < ( o )  if YT > 1, i.e. at sufficiently high gain or loading level. That is, x is the 
characteristic function of the set R \ [do, 001, formally x( 0) = xB,r-oo,ool( O), 
with 0, being the positive solution of (24). 

In the case where the input-output relation has the multi-step structure of a Q- 
state neuron (Rieger 1990, Mertens et a1 1991, Boll6 er a1 1991), the field distribution 
may have one or several gaps, depending on the ‘average slope’ of g near z = 0. 
This may give rise to an intricate structure of co-existing metastable retrieval phases 
(Bbs 1992), a phenomenon which we will study in greater detail in a forthcoming 
paper @os and Kiihn 1992). 

Gaps or no gaps, (23) clearly shows that local field distributions deviate from the 
Gaussian for networks of stochastic two-state neurons in the context of the replica 
approach, and that their precise form will also depend on details of the neural gain 
function. 

Note that knowledge of P<( 0) speeds up the numerial solution of the fixed-point 
equations considerably, since it allows us to rewrite them as 

where the double angular brackets now denote a combined average over the 
and PE( O), the latter being explicitly known once the gaps-if any-have been 
determined from (24). By computing local field distributions, we have thus been 
able to circumvent the problem of solving fixed-point equations within fixed-point 
equations as in the formulation (19)-(21). We now turn to results. 

3.3. Results for homogeneous networks 

For input-output relations g with lim,,,, = fl, and g‘(z) < g‘(0) = 1, the 
topology of the phase diagram is similar to that of the stochastic model, inverse gain 
playing a role similar to that of temperature (see figure 3). This is not surprising, since 
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a a 

Figure 3. Phase diagsam for soft-neuron versions of the Hopfield model. PM, SG. 
and FM denote the paramagnetic (null.), spin-glass, and retrieval phases, respectively. 
Results for the stochastic king network are shown as broken cuwes (upon identification 
of inverse gain and temperature scales) for comparison. Retrieval phase boundaries 
are shown for neurons with hyperbolic tangent ( g ( z )  = tanh(z); lower full a w e )  and 
piecewise linear (g(z) = sgn(z)min(lzl,l); upper full c w e )  response. (b) Enlarged 
portion of the phase diagram of (a). It also shows the ‘gap-line’ (dotted) below which 
the local field distribution for the retrieval phase has a gap at small 0, and the M-line 
(long-dashed), both for neurons with hyperbolic tangent response. 

fiite gain, Like non-zero temperature, reduces the average response of each neuron 
to i$ local field. Unlike finite gain, however, non-zero temperature also induces 
fluctuations around the average response which are not present in deterministic finite- 
gain systems. This explains why in the tanh-soft-neuron case, phases of spontaneously 
broken symmetry extend to higher values of inverse gain than in the case of stochastic 
king-neurons when inverse-gain and temperature scales are identified. In the limit of 
finitely many stored patterns (a = 0), on the other hand, fluctuations in the individual 
neurons’ response play no role and naive mean-field theory provides an appropriate 
description of the system. As a consequence, as noted above, at a = 0 the system 
with deterministic tanh-neurons is formally equivalent to the stochastic Ising model 
network if gain y and inverse temperature p are identified. 

Note that the instability of the ‘paramagnetic’ null solution with respect to spin- 
glass ordering occurring at y;’ = 1 + 2 6  and the maximum storage capacity 
aE N 0.138 at y-’ = 0 are universal properties of networks having normalized 
sigmoid input-output relation as defined above. As for the case of finitely many 
patterns, the order of the spin-glass transition at y,(a) will depend on properties of 
g ( + )  in the vicinity of T = 0, and there will quite generally be hysteresis effects, if 
the transition is discontinuous. 

In an enlarged portion of the phase diagram (figure 3(b)), we also exhibit the tine, 
satisfying y r  = 1, that signifies the opening of a gap in the local field distribution 
for the retrieval phase. The other additional line signals an instability of the replica- 
symmetric retrieval solution in the direction of the replicon mode (de Almeida and 
Thoulass 1978). This instability occurs when the replicon eigenvalue 

= (1  - c)z ((([VZ] - [V]y ) )  - 1 

becomes positive. Using the fact that 
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we can conclude from (25) that replica symmetry is definitely broken in regions of 
parameter space where the local field distribution has a gap. To see this one notes 
that gaps in the local field distribution are in one-to-one correspondence with jumps 
of lim+,[V],,, = q(E, x), hence with &function singularities of its xderivative. 

W i l e  local field distributions as computed in the previous section do deviate from 
the Gaussian form typically obtained for networks of stochastic neurons in the context 
of the replica method, we find this effect to be small in regions of parameter space 
where replica symmetry is unbroken, and barely visible in graphical representations. 
The effect appears to be stronger for the soft-neuron version of the SK model (Biis 
1992). 

3.4. Network inhomogeneifies and self-couplings 

In the considerations of the previous sections, we have restricted our investigations 
to systems which are homogeneous in the sense that all neurons behave identically. 
The statistical mechanics approach, however, also applies to inhomogeneous systems 
in which neuronal gain functions = g ( y U i )  vary from neuron to neuron in that 
either gainparamerem y; turn out to be i-dependent while the functional form of the 
neuronal gain functions remains the same for all neurons, or in that gain functions 
themselves belong to different classes. Moreover, self-couplings Jii which may, but 
need not, vary with i are also covered by the general statistical mechanics approach 
described in section 2. Inhomogeneities of this type only create an additional element 
of on-site disorder, i.e. disorder of the same type as that embodied in the random 
patterns stored in the net, creating no additional problems of principle. 

The only change required is to replace the single-site measure dG(V) introduced 
in (12) by the i-dependent measure 

dGi(V) = dp(V)exp[P(Jii - a )V2/2 -  P y ' G i ( V ) ]  (26) 

in which G, is the integrated inverse input-output relation of a neuron with gain 
function gi, and yi and Jii  denote @ossibly idependent) gain parameters and self- 
couplings. Assuming that the Jii, the yi and the g, are randomly and independently 
selected according to some given distribution, one can show that-formally-(13)-(21) 
which describe the collective behaviour of homogeneous networks remain valid in the 
inhomogeneous case, provided that double angular brackets are now understood as 
implying an additional avemge over the randomness contained in the measure dpi( V). 
Finiteness of the family of possible input-output relations is sufficient for this self- 
averaging result to hold. 

Let us now proceed to see how network inhomogeneities and self-couplings 
(random or not) will affect the overall network performance. For the sake of 
definiteness, here we will restrict our attention mostly to results which are universal 
across the class of standard sigmoid input-output relations g introduced earlier. 

The simplest case to consider is a non-random self-interaction J i i  = J,. 
Qualitatively it is clear that a positive J ,  will favour large values of IVI, whereas 
negative J, will tend to favour attractors having small values of IV1. In the case of 
finitely many stored patterns (a = 0), a small-m, expansion of (15u) reveals that 
the local instability of the paramagnetic solution against the formation of phases with 
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non-zero my, which for Jo = 0 occurred at yc = 1, is now shifted to higher or lower 
values of y. depending on the sign of Jo. One finds 

and a complete suppression of the retrieval phase for Jo  < -1. Further detailed 
investigation of the small-m, expansion shows that variations in Jo do not alter the 
order of the phase transition at yc. 

By a small q, expansion of (19) at extensive levels of loading one finds that 
the local instability of the paramagnetic solution with respect to the formation of 
spin-glass-type ordering now occurs at 

y, = (1 + J,+ 2&)4 J, > -1 - 2 6  (28) 

with the paramagnetic solution extending down to 7-l = 0 for a < (ill+ Jol)z  when 

For non-negative J,, the critical storage level at y-l = 0 remains at a, N 0.138, 
irrespective of the value of J,, > 0. Details of the retrieval phase boundary beyond 
the points (a = 0, y = (1 + J 0 ) - l )  and, for Jo > 0, (a N 0.138, y-I = 0) depend 
on details of the input-output relation. 

Figure 4 shows how phase boundaries are affected by non-random selfcouplings 
for a network with piecewise linear response. Apart from fine details, non-zero self- 
interactions appear to result in an overall parallel displacement of phase boundaries. 

Next, let us consider networks of neurons of all which have the same input-output 
relation, but randomly varying gain parameters 7 ; .  A small-m, expansion of (15a) 
at o = 0 shows that the instability of the paramagnetic null phase with respect to 
the formation of a retrieval phase is now controlled by the average gain parameter, 
the critical condition being (y), = 1. In case of a second-order transition (i.e. for 
g”’(0) < 0) one has 

1 + Jo < 0. 

i.e. the third moment (y3) affects the amplitude of the retrieval overlap near (y),. 

Figure 4 Phase diagram for a soft-neuron 
Hopfield model with non-zero self-mulings Jo and 
piecewise linear response. Shown are retrieval 
phase boundaries for Jo = O S ,  0.25, 0.0, -0.25, 
-0.5, and -0.75 (top to bottom). 
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In a similar vein, the condition for the local instability of the null-phase against 
formation of spin-glass-type ordering is given by the conditions 

a Y 
1-77 

which can in general no longer be evaluated analytically. In (29)-(30), angular 
brackets denote averages over the distribution of gain parameters; the subscript c 
refers to critical conditions. 

4. Other forms of synaptic organization 

Having discussed the storage and retrieval of unbiased binary random patterns in 
networks with Hebb-Hopfield couplings (9) in some detail,'we now lurn to the 
investigation of other storage tasks and other forms of synaptic organization. First, 
we briefly address the storage of low-activity patterns in networks of analogue neurons. 
In particular, we demonstrate that low-activity networkf-operating at low local firing 
rates if gain functions are chosen such as to reflect neural refractoriness (Amit 
and 'Tsodyks 1991a, b, Kiihn 1991)-saturate the Gardner bound for the storage 
of low-activity patterns (Gardner 1988) by order of magnitude. The second topic 
of the present section is devoted to the statistical mechanics of analogue neurons 
coupled via pseudo-inverse synapses (Kohonen 1984, Pemnnaz et al 1985, Kanter 
and Sompolins!q 1987). 

A third possible topic, namely the problem of storing multi-state (grey-toned) 
patterns in networks of multi-state neurons, is in principle covered by the structure 
of the general theory presented in the previous sections. However, discussing the 
intricate features emerging in such systems would be beyond the scope of the present 
article, so we leave it to a separate publication (BSs 1992, Bos and Kuhn 1992). 

4.1. Covariance rules and low-rates systems 

In this first subsection, we turn to the problem of storing biased binary random 
patterns in networks of analogue neurons. The formal structure of the theory outlined 
in the previous section can be taken over nearly word for word, if we adopt the 
convention 0: E { ,0,1} for the pattern bits to be stored, with 

Prob{qf = 1) = a (31) 

and if we take the storage prescription to be of the form 

with a normalization constant A. = a(1-  a )  chosen such as to fx the Jij-scale in 
an a-independent manner. 

This convention makes (32) a so-called covariance learning rule (Tsodyks and 
Feigel'man 1988, Buhmann er al 1990) which is well known to be an efficient learning 
rule saturating the Gardner bound a, - (2a ln( l /a))-I  for the storage of low-activity 
patterns with a < 1, if combined with a 0-1 representation of neural activities and 
appropriate thresholds; see also Horner (1989) and Perez-Vicente and Amit (1989). 
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The problem of storing and retrieving low-activity patterns in networks of analogue 
neurons operating at low firing rates was recently and independently addressed by 
Kiihn (1991) and by Amit and ?sodyks (1991a, b), with basically identical conclusions: 
(i) retrieval of low-activity patterns at low firing rates is possible even at extensive 
levels of loading; (ii) low tiring rates can be understood as a natural consequence of 
neural refractoriness. 

Here we do not wish to repeat in detail the arguments leading to these results. 
Rather, we wish to address the question of how low firing rates affect network 
efficiency as measured, e.g., by the storage capacity. Our main result, which appears 
not to have been reported before, is that networks of analogue neurons retrieving 
at reduced firing rates continue to saturate the Gardner bound for the storage 
of low-activity patterns by order of magnitude, albeit with a systematic depression 
proportional to the square of the reduced average W i g  rate (on a scale on which 

Before deriving our main result, let us briefly present an argument showing that 
gain functions giving rise to a mode of operation at low firing rates do, in fact, emerge 
naturally from models of neural refractoriness. A simple version is the following: a 
neuron emitting a spike, say, at time t = 0, cannot generate the next spike before 
the end of the absolute refractory period at time t l) At later times, spike emission is 
possible again but requires at first elevated, later on progressively lower PSPS. AU this 
can be modelled by a time-dependent effective threshold 29(t) which is infiiite during 
the absolute refractory period and which decreases asymptotically to its resting value 
29 according to 29(t) = 29 + fa(t - to) ,  with some function fd decreasing from CO 

to 0, as t goes from to to CO. Equality of externally induced PSP U and 29( t )  at t = t' 
defines the time t* of the next spike emission. This gives V = g ( U )  = l / t * (U)  
for the gain function, with g(U) = 0 for U < 29, and, putting V,, = l/t, = 1, 
g ( u )  = 1/(1+-f;'(~-$)) for U 2 29, rising asymptotically to v,, = 1 as U + CO. 

The detailed shape of g will depend on the shape of fd. i.e. on details of the decay 
of the effective threshold to its resting value. 

A more sophisticated and detailed variant of the preceding argument has been 
advanced by Amit and Tsodyks (1991a). For our purposes, however, the details are of 
no prime importance. Rather, it should be noted that-independentlj of fine details- 
gain functions typically emerging from such a description of neural refractoriness do 
under normal circumstances (U < CO) give rise to firing rates below maximum. 

Turning to a description of the collective behaviour of such systems, we introduce, 
as usual, a gain parameter y to vary U-scales. Scaling the deviation of the PSP from 
threshold 29, we write OUT input-output relation in the form 

v,, = 1). 

v = s(-/(U - 29)) (33) 

and we have g ( r )  = 0 for z 6 0, while g(z) > 0 for r > 0, rising asymptotically 
to 1, as z + CO. This convention modifies C( V) in (3), (4) to 

G i (V)  = g; '(V')dVf+y9V sv (34) 

The averaging of the free energy over the uncondensed patterns is not significantly 
affected by the more complicated statistics of the 9;. since only the covariance 
((9: - a)($ - a ) )  = 6jj6,vAo matters. The normalization of the J; j  in (32) is 
chosen preclsely to compensate its effect. Here we only reproduce the fixed-point 



846 

equations that determine the phase structure of the theory (Kuhn 1991, Amit and 
?sodyks 1991b) 

R Kiihn and S Bos 

41 = (( Q2(P, 4)) ’ 

Because of the explicit appearance of a threshold in (33) and (34), the t = p(p, z )  
are now determined from the soIutions of a slightly modified version of (19), namely 

Asymptotic analysis of these equations in the limit a -+ 0 reveals that the storage 
capacity of the low-activity low-rates system obeys 

where 7 = O(1) is the (low) average firing rate of those neurons that should be 
fiiing in one of the low-activity retrieval states. The main line of reasoning leading 
to this result is as foUows. Anticipating that a, - (aIn(I/a))-’ as a 3 0, we 
assume that a LT ( z a h ( l / a ) ) - ’  and try to determine the smallest z for which 
the fixed-point equations have retrieval solutions. The requirement that in retrieval 
solutions the neurons on qv = 0 sites should be ‘off‘ with sufficiently high probability 
to guarantee q1 = U ( a )  relates 2 with 29. We find z 2 2/@. Thii condition can 
be shown to be consistent with retrieval-which, of course, requires (1 - a ) m ,  > 0 
and -amy - 29 < 0 for m, = O(1)-provided 0 is suitably chosen. Retrieval at 
low firing rates is, in addition, characterized by my N v, where the actual value of 
the mean fiiing rate v at ‘on ’des  will depend on details of the gain function. For 
a < 1, this implies the bound 29 6 v which, finally, gives z 2 2/v2, and hence 
proves (37). 

In summary, networks retrieving at low firing rates saturate the Gardner bound 
for the storage of low-activity patterns by order of magnitude. Low firing rates do, 
however, give rise to a systematic depression of a, relative to standard low-activity 
systems due to the factor 7’ appearing in (37). 

4.2. Pseudo-inverse couplings 

The second topic of the present section is devoted to the statistical mechanics 
of graded-response neurons coupled via pseudo-inverse synapses (Kohonen 1984, 
Personnaz et al 1985, Kanter and Sompolinsky 1987). That is, we assume that the 
couplings between neurons are given by 
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where C is the correlation matrix of the stored patterns with elements 

i = l  

As noted in section 2, self-couplings in analogue-neuron systems with continuous 
time dynamics enjoy a different status to those in systems of binary neurons with 
asynchronous dynamics. In the latter, self-couplings must be absent from the 
dynamical rule in order that a statistical-mechanical approach be applicable; in the 
case of Ising neurons, they may of course be included in the Lyapounov function, 
since there they only give a constant, i.e. {S,}-independent, contribution to the 
energy. In analogue-neuron system, on the other hand, self-couplings may appear in 
the dynamical rule, and they must be included in the Hamiltonian as they appear in 
the dynamics. 

Our analysis of the collective behaviour of the system again uses the general 
ideas outlined in section 2. In the details, we follow Kanter and Sompolinsky (1987), 
with modifications as usual to a m u n t  for the continuous nature of the y ,  the most 
prominent difference being non-trivial diagonal entries in the matrix of Edwards 
Anderson order parameters, as we have already encountered in the cases studied 
above. 

Being interested in pattern retrieval capabilities, we assume that the system has 
macroscopic correlations with at most one of the stored patterns, say c1, and obtain 
the following expression for the free energy in the replica-symmetric approximation: 

P m2 1 X 

2 1 t Z 0  2 l t x o  2x0 - Pf(P) = - - [In(l t xo) t -1 t 

a a l  - -In- - - ( 1 -  CY) In(1- a)  t 2 xo 2 

where m, no. q,, x, and xo must solve the following set of fixed-point equations: 

41 = (([VI;l,J) 

P(41- m2)xo 
[ l -  2 a -  c+ 2Z0(1 -a)] 

I =  
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with 
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H ( V )  = y-'G(V) - (et1 +&z) V -  

Note that (W, e) are as in k t e r  and Sompolinsky (1987). As usual, we have 
to take the deterministic p - 03 l i t ,  in order to obtain information about the 
collective properties of the net. In this limit, (4Oa-c) simplify to 

((zp(tl, 2 ) ) )  c = - q1 = (( v*(t', z))) (42) 
1 

m = ( ( E ' V ( E 1 , Z ) ) )  d= 
where v = v(tl, Z) is determined from 

Alternatively, (42)-(43) may be reformulated in terms of distributions of local fields, 
as outlined in section 3.2. 

As in the case of Ising neurons coupled by pseudo-inverse synapses, the fixed-point 
equations describing the collective properties of the network have stable retrieval 
solutions with r 3 0. In this limit, we find that the fixed-point equation for the 
retrieval overlap m decouples from the other equations: 

m = 9 (r(1 t J ,  - a h )  (44) 

and we have qo = q1 = m2. Equation (44) gives a retrieval phase boundary in the y- 
a-plane at y ( l + J o - a )  = 1, a 4 1. That is, for J ,  > 0 we have a retrieval phase for 
sufficiently large y up to the theoretically possible maximum a, = 1. If, on the other 
hand, J, < 0, then the retrieval phase exists only up to aC = 1 - lJol, the retrieval 
phase being completely suppressed for J ,  < -1, much as in the Hebb-Hopfield case. 

5. Stochastic dynamics in continuous time 

Up to this point, our investigation of the collective behaviour of analogue neuron 
systems has been entirely confined to network, with a continuous t ime dynamics 
given by the deterministic rule (I), (Z), and our statistical-mechanical approach has 
implied a further restriction to cases where this dynamical rule is governed by a 
Lyapounov function. 

The dynamics of biological neural network, as well as that of their electronic 
counterparts is, however, never completely free of stochasticity. Accordingly, the 
purpose of the present section is to see whether and how stochasticity can be 
incorporated into our investigation of collective behaviour of networks with dynamics 
formulated in continuous time. As before, we will not attempt to solve the full 
(stochastic) dynamical problem; rather our prime concern will be with equdibriwn 
properties of networks with stochastic continuous time dynamics. Before embarking 
on the analysis, let us add a few more specific comments regarding its motivation. 

In the context of neural modelling, it has been argued (Amit and 'ISodyks 1991a) 
that the effects of noise on neural dynamics can be incorporated in the gain function, 
in the course of a reduction from a description of the dynamics in terms of spikes 
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to a description in terms of rates, so that (l), (2) would already represent the full 
story-including stochasticity, in which case adding fluctuating forces to (I), (2) might 
not make much sense. Recent results of Gerstner and van Hemmen (1992), on the 
other hand, indicate that such a reduction may not be valid in general. This being so, 
adding noise to (l), (2) appears to be one of the possibilities to model the effects of 
whatever fluctuations might have been swamped in the course of the spikes-to-rates 
reduction (or even not taken into account in the spikes description to begin with). 
Moreover, apart from this debate, it should be noted that most of what we are going 
to present below is nor restricted to the large-system limit which has been instrumental 
in the arguments in favour of the possibility of a complete spikes-to-rates reduction. 

In a wider context, we believe that what we are going to report here may be 
relevant to understanding the effects of noise in coupled nonlinear dynamid systems 
in general. 

Guided by previous approaches, we investigate the possibility of stationary states, 
assuming that they satisfy a detailed balance condition (Peretto 1984). At least two 
ways of approaching this problem are possible, corresponding to formulations of the 
continuous-time dynamics solely in terms of neural potentials or solely in terms of 
neural firing rates. In both cases, a detailed balance condition unambiguously fixes 
conditions on both noise and synaptic organization: synapses must be 'essentially' 
symmetric, and the strength of the noise must be coupled to the dynamical processes 
in a manner depending on neural input-output relations. Under these conditions a 
remarkable reciprocity between potential dynamics and fiiing rate dynamics emerges: 
for the potentialdynamics, the invariant distribution is a Gibbs distribution over firing 
rate space. For the noisy firiug-rate dynamics, it huns out to be a Gibbs distribution 
over the space of neural potentials. Both distributions will be seen to exist only under 
unrealistic assumptions about the noise in the system. 

The possibility to choose two different 
representations for the dynamics (I), (2) rests on the assumption that the neuronal 
input-output relation K = g i ( r i U i )  is invertible, so that (1): 

Let us now turn to the details. 

can be formulated either entirely in terms of fring rates, namely 

where X N ( U )  is obtained from X N ( V )  by replacing every r/, by g i ( r i U i ) .  By 
adding stochastic forces to the right-hand sides of (46) and (47), we get a pair of 
stochastic differential equations, 
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and 
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which unlike (46) and (47) describe physically non-equivalent situations. To see this, 
one notes that by using the transfer functions g i  to transform the V-representation 
(48) of the stochastic dynamics into a U-representation, one obtains stochastic 
differential equations for the U; in which the noise is of a mulriplicatirv rather than 
of an additive nature as in (49). The same is observed on transforming (49) into 
a V-representation. Neither (48) nor (49) are of the form of a stochastic gradient 
dynamics, giving rise to canonical Gibbs distributions generated by %,,,(U) or E,,,( V )  
if the noise were Gaussian white noise with V -  or U-independent intensity given 
by (CT(t)C;(t’)) = 2kBTD06(t - t’), I E {U, V}. We will, however, see below 
that under suitable conditions on the noise we shall nevertheless obtain Gibbs-type 
equilibrium distributions describing the stationary states of networks with stochastic 
continuous-time dynamics which satisfy detailed balance conditions, and we will 
encounter the reciprocity relation between potential dynamics and tiring-rate dynamics 
announced earlier. 

It turns out that to satisfy these conditions on the noise, we have to allow the 
stochastic forces in (48) and (49) to depend on the y and the Ui, respectively, 
so that, what prima facie appears to be purely additive noise, may in fact contain 
multiplicative contributions. This covers, in principle, a rather wide range of noise 
models. In what follows we will, however, restrict our attention to cases where the 
multiplicative contribution to the noise-if any-is local (in a sense to be specified 
below), and where the noise is uncorrelated (white) in space (i,j) and time (t) .  Our 
results and conclusions below will thus be fairly general, subject only to these three 
restrictive assumptions. 

Let us consider the firing rate, i.e. the Vdynamics, fist. We take the stochastic 
forces in (48) to be Gaussian white noise, with an intensity locally coupled to the 
dynamical process according to 

(<v( t ) (y ( t ‘ ) )  = h i j D ( Y ) 6 ( t  - t ’ ) .  (50) 
The nature of the stationary distribution is studied in terms of the FoMter-Planck 
equation (Gardiner 1983) corresponding to (48), (50): 

with a drift-term 

given by the non-fluctuating contribution to the force in (48), and a diffusive 
probability current determined by the statistics (50) of the stochastic forces. We are 
now searching for stationaq distributions P ( V )  of (51) satisfying detailed balance, 
i.e. solutions for which the probability current itself-rather than just its divergence- 
is everywhere zero. For such solutions, the term in curly brackets in (51) must vanish 
separately for each i, implying 

(53) 
a K j ( V )  - - -D(K) P ( V )  = - P ( V ) .  L[ D(K) :(A >] a i’i 
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If we demand that P ( V )  be of Gibbs' canonical form, 

P ( V )  = NeXP(-@(V)) (54) 

we obtain the following so-called potential condition (Graham and Haken 1971, 
Gardiner 1983) connecting @ ( V )  with the drift and diffusion terms in (51): 

d d -Ki(V)  - -lnD(V,) = - - @ ( V )  1 < i 4 N .  (55) 
2 

WVi) aV, aK 
If, in addition, one demands that @(V) be twice continuously differentiable in the 
Vi, so that 

one obtains a criterion for solvability of (55), which ut the same time fixes the strength 
of the noise in (50) to 

D ( K )  = 2 1 c B T x g :  di  Ci (g;*(V,)) . (56) 

Here the d; are positive constants, di  > 0, which must be chosen such that 

(57) j . .  .- d .  J . .  = d .  J .  = .fii 
I ,  .- I aJ J It 

for all pairs i , j .  The condition that such a set of positive constants can indeed be 
found constitutes a condiiion of solvubiliry on the Jij which we shall call 'essential 
synaptic symmetry' in view of (57). Obviously, if the J i j  are symmetric to begin 
with, then the di  in (56) are i-independent and can be absorbed in the temperature 
parameter. Given that a set of di  exists, (55) can be solved for @ ( V )  to give 

is a slightly modified version of (3)--coinciding with (3) if the Jij are symmetric to 
begin with. This gives 

for the stationary distribution, or, using the input-output relation once more, 

P ( V )  n d V ,  = Nexp(-peN(U))  n d U i  (61) 
i 

where we have absorbed further constants in the normalization factor. Thus, if 
the strength of the Gaussian white noise in (50) satisfies (56), then the firing-rate 
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dynamics has a stationary distribution satisfying detailed balance. This distribution is 
the Gibbs distribution over the space of neural potentials U, generated by 7?N(U). 

Before turning to an interpretation of this result, let us briefly outline the 
analoguous argument for the potential dynamics, i.e. the U-dynamics. As for the V- 
dynamics, we take the stochastic forces to be Gaussian white noise with an intensity 
coupled to the dynamical process via 
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(Cy((t)CY(t')) = 6;jD(Ui)6(t - t') (62) 

and search for a stationary solution of the corresponding Fokker-Planck equation 

with 

satisfying detailed balance. Writing 

P ( U )  = Alexp(-@(U)) (65) 

for this stationary distribution, we can formulate the detailed balance condition in 
term of a potential condition as in (SS), 

a a 
-Ki(U)- -lnD(Ui) = - -O(U) 1 < i < N . (66) 

2 
DiUi) 8U; 8U; 

Demanding the same type of differentiability properties of @ ( U )  as we had of @iV)  
before, we obtain a condition for solvability that fixes the strength of the noise in (62), 

As for the firingrate dynamics, the d, > 0 must be chosen to satisfy (57), a condition 
that can be met if synapses are essentially symmetric. Under these conditions, we can 
solve (66) for @ ( U )  to obtain 

@ i U )  = B*i,(U) + C I n D ( U i )  (68) 

and from this, by making further use of the input-output relation, finally 

P ( U ) n d U ,  = N e x p ( - P f i N ( V ) ) n d F  (69) 
i i 

which is the formal counterpart of (61). That is, with a Gaussian white noise satisfying 
(67) in (62), the noisy potential dynamics has a stationay distribution satisfying 
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a a 

Figure 5. (a )  Retrieval phase boundaries for a network with Hebb-Hopfield couplings 
and a stochastic U-dynamics in the --plane for various temperaturw. From top to 
bottom, the curves correspond to T = 0.00 (broken), 0.05, 0.10, 0.15, 0.20, and 0.25. 
The neural gain function is a hyperbolic tangent. ( 6 )  Retrieval phase boundaries for a 
nehvork with Pseudo-inverse couplings and a stochastic U-dynamics in the or-y-plane 
for wious  temperatures. Temperatures are T = 0.000 broken), 0.001, 0.01, 0.05, 0.10, 
0.15, 0.20, 0.25, and 0.30 (&om top to bottom). The neural response is taken to be a 
hyperbolic tangent. 

detailed balance. This distribution is the Gibbs distribution over the space of neural 
outputs (firing rates) V, generated by %,,,(V). 

In sections 3 and 4, we have evaluated free energies corresponding to (69) in 
cases where the synapses are symmetric, so that %,(V) = X H , ( V ) ,  with X,,,(V) 
given by (3). There, we were only interested in the p + cc) limit of the theory. Free 
energies and fixed-point equations characterizing the phase structure of the models 
have, however, been derived, and can be evaluated for arbitrary p. At finite p, the 
collective behaviour thereby described is that of networks of analogue neurons with 
a noisy potential dynamics given by (49), (62). 

With temperature we now have a third parameter, besides storage level a and 
gain parameter 7 ,  which has its influence on network performance. In this enlarged 
parameter space we, too, have some degree of universality of network performance 
with respect to alterations of gain functions. For instance, returning to networks with 
Hebb-Hopfield couplings and to standard sigmoid gain functions-with g(z)  + &l 
for I --t &CO and g'(s) < g'(0) = 1-as discussed in section 3, we find a third 
universal point of the retrieval phase boundary. Besides 7;'( T = 0, a = 0) = 1 and 
ac(T = 0 , y '  = 0) 0.138, we also have 2'Jy-l = 0,a = 0) = i, irrespective of 
other details of the gain function. These three universal points on the axes of the 
three-dimensional parameter space give a rough first impression of the typicaI size 
of the retrieval region in parameter 3-space. Note that the critical temperature at 
infinite gain, where neural outputs are confined to &l, is T, = f (which is incidentally 
also the critical temperature of the mean-field Heisenberg ferromagnet) rather than 
T, = 1, as one might perhaps have expected on the basis of an analogy with the 
stochastic king network in this limit. The origin of this discrepancy lies in the fact 
that the dynamical variables in the present case are neural potentials rather than 
neural output levels as in the stochastic king network. 

Details of the phase boundary, including the order of the phase transition at non- 
zero temperature, will of course depend on details of the transfer function chosen. 
In figure 5 we present boundaries of the retrieval phase in the 017 plane for various 
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temperatures, both for networks with Hebb-Hopfield coupliig and for networks with 
pseudo-inverse synapses. 

All this may seem nice. At this point, however, we have to draw the readers' 
attention to the condition (67) on the variance of the Gaussian white noise under 
which the above results about the collective behaviour of networks with noisy potential 
dynamics apply. For gain functions which saturate as Vi i *CO, (67) demands that 
D ( U i )  diverges as lUil becomes large. Note that for popular choices of input-output 
relations such as the hyperbolic tangent or the Fermi-function, the required divergence 
of D( U i )  would even have to be exponentially fast. Neither for biological neural 
networks nor for their electronic counterparts, such properties of the noise seem in 
any way reasonable. From a pragmatic point of view, one might perhaps argue that 
neither biological nor electronic networks ever operate in the limits Ui -, foo, so that 
in the 'accessible regions of phase space', i.e. those to which the Gibbs distribution 
(69) does at all give appreciable weight, the condition (67) may not be as outlandish as 
it may seem at first sight. On the other hand, there are gain functions, in particular 
those modelled to encode neural refractoriness (see, for instance, section 4.1), for 
which the 'g'(yUi) + 0 catastrophe' in (67) occurs at f i t e  Ui, namely, immediately 
below threshold. Thus, for this case, the pragmatic point of view presents no way out 
of the dilemma. 

For the stochastic Vdynamics (48), the condition (56) on the noise implies that 
the variance D( r/i) of the noise, and with it the drift term (52), must vanish at 
saturation levels of the gain function, for which g'(g-'(Y)) = g'(yUi) = 0. As a 
consequence, a neuron with a Wig rate reaching such a saturation level, would 
henceforth never change its state, since both systematic and fluctuating forces exerted 
on it vanish. The network dynamics would therefore eventually completely freeze 
in neural saturation levels, whenever such saturation levels exist. In the stationary 
distribution (60), this freezing effect manifests itself in the fact that the single-site 
m a r e  dl$/g;(g;'(Vi)) has non-integrable singularities at the saturation levels for 
every saturating input-output relation. This implies that the stationary distribution 
gives all the weight to these saturation levels, no matter what the other system 
parameters are. If we denote the possible configurations of saturation levels by 
S = (Si), then P ( S )  o( exp[-"(S)] would according to (60) give the probability 
that the system is frozen in S, independently of the gain parameter y. For systems 
for which the gain functions lead to saturation levels Si E {kl) with G(1) = G(-1), 
the statistics of asymptotic saturation configurations is thus given by the equilibrium 
distribution of the standard model with asynchronous stochastic dynamics! 

As for the potential-dynamics, the detailed balance solution for the V-dynamics 
is not to be had without pathologies. In particular, the vanishing of the noise at 
saturation levels of the gain-functions appears to be an unrealistic feature of noise 
sources. On the other hand, this property at least-along with the vanishing of drift 
t e r m  at saturation levels-must be regarded as a consequence of our transformation 
of a 'natural' Udynamics in an unbounded domain into a V-dynamics, which is now 
defined in a bounded domain (if the g(yUi) saturate), rendering detailed-balance 
conditions somewhat unnatural. 

But with the 'natural' U-dynamics, too, the pathologies associated with detailed 
balance solutions remain. The obvious conclusion must then be that detailed balance 
solutions are not realistically to be observed in neural networks with continuous time 
dynamics. For biological nets, this is not surprising anyway, because for these the 
requirement of essential synaptic symmetry is unrealistic to begin with, so that the 
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pathologies of the noise appear as just a minor additional problematic issue. In 
the case of electronic networks, however, all building blacks can be designed to 
make the deterministic dynamics (l), (2) quantitatively correct, and to satisfy all 
conditions needed for detailed balance, mept  that on the noise. (There was one 
additional assumption we made on our way, namely the smoothness assumption on 
Q! in (54), resp. (69.) At least for systems with smooth input-output relations, 
this assumption seems to be i~ocuous, however, and our feeling is that an escape 
from the pathologies encountered should not be sought along the line of relaxing this 
particular condition.) Thus, perhaps surprisingly, stationay states satisfjhg detailed 
balance might not even be observed in networks built of electronic circuitry-unless, 
of course, relaxing our restrictive assumptions on the family of noise models taken 
into account could save the situation. Because of these restrictive assumptions, it 
must be admitted, our conclusions here must still be regarded as somewhat tentative. 
Nevertheless, the results of the present section and the foregoing discussion should 
shed some light on a number of difficulties that one is likely to encounter when 
dealing with noise in coupled nonlinear dynamic systems. 

6. Summary and discussiou 

In the present paper, we have explored our previously developed statistical-mechanical 
approach to analysing the long-time behaviour of networks of analogue neurons 
governed by a set of RC-charging equations, by applying it to a networks varying 
with respect to learning rules and to the statistics of stored data. 

In particular, we have provided further details about the analogue version of 
the Hopfield net, we have studied low-activity low-firing-rate systems, and we have 
analysed analogue neuron systems coupled via pseudo-inverse synapses. 

Local field distributions were computed for the analogue version of the Hopfield 
model, and were found to deviate from the Gaussian form obtained for stochastic 
neurons in the context of the replica approach. 

Replica symmetry of the retrieval solutions in networks with Hebb-Hopfield 
couplings was found unbroken down to fairly small values of inverse gain, whereas 
the spin-glass phase is unstable with respect to replica symmetry breaking right wlzere 
if appears-much as in the standard model, if inverse-gain and temperature scales are 
identified. 

Networks of analogue neurons storing low-activity patterns were observed to 
retrieve naturally at low firing rates, if gain functions are chosen such as to model 
neural refractoriness. For networks of this type the storage capacity scales as 
a, - V /2allnal as a -, 0, and is thus of the same order &magnitude as the 
Gardner bound for the storage of low-activity patterns, with a systematic depression 
proportional to the square of the average (low) f i g  rate (on a scale on which 

Networks coupled by pseudo-inverse synapses can retrieve patterns up to the 
theoretically possible maximum ac = 1, if neural gain parameters are taken to be 
sufficiently high. 

At this point, let us stress that our statistical-mechanical approach to analogue 
neuron systems can be applied to a very wide range of systems, namely those for 
which the set (l), (2) of RC charging equations is governed by a Lyapounov function. 
This requires synapses to be symmetric, and input-output relations to be monotone 

-2 

v,, = 1). 
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non-decreasing, but otherwise arbhry. While input-output relations should, in 
principle, increase for large IUI not faster than linearly with IU(,  to ensure that 
the Lyapounov function (3) is bounded from below, hence that the system is globally 
stable, this restriction can, in practice, be easily dispensed with. If one constrains 
the V, integrations in (7) to some suitably large compact subset of RN, all formal 
manipulations carried out in the sequel go through unaltered, and the fixed-point 
equations describing the collective properties of the system remain valid 4s they are, 
except that dl solutions (with bounded P in (19), (Zl), etc) now describe truly 
metastable situations, there being no absolute minimum of ‘HN(V) for finite vi, 
hence no true absolute stability of the system. 

Lastly, the statistical-mechanical approach was generalized to include effects of 
fast stochastic noise. Equilibrium distributions satisfying detailed balance were shown 
to be unique and of Gibbs’ canonical form, exhibiting a remarkable reciprocity 
between potential dynamics and firing-rate dynamics, as discussed in detail in the 
previous section. They do, however, exist only under unrealistic assumptions about the 
noise in the system. Hence, our conclusion is that equilibrium distributions satisfying 
detailed balance are not to be observed in systems with realistic noise sources, that 
is to say, noise sources within the class of noise models considered. Elucidating the 
nature of the probability currents that would be present in such systems-even if in 
equilibrium-would certainly be a project worth pursuing. 

It is clear that the assumptions regarding properties of the noise sources we have 
made in section 5-though quite commonly adopted-should eventually be relaxed in 
the course of arriving at a solution that can be deemed fully satisfactory in general. 
As yet, we have not been able to do so. 

In closing, it is perhaps worth pointing out that (3) is also a Lyapounov function 
of the asynchronous dynamics 
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I> l$(t + At)  = gi riRi  J i j Y ( t )  + Ii ( I j  
provided that the g i  are monotone increasing and that the J i j  are symmetric, with 
Jii  = 0. Under these conditions the Gibbsdistribution generated by X,(V) is 
an equilibrium distribution for the asynchronous stochastic dynamics defined by the 
transition probability 
Prob{l:(t+At) E {V’,V’+dV’}IV} 

- =P [P (u,(v)V’- ~Y’Gj(v0)] ddV‘)  - 
J d d  V’) exp [P (uAV)V’ - r;’Gi(W)] 

with Ui(V) = Cjtzi, J i j Y  + I ; ,  which satisfies detailed balance (see also Treves 
1990a, b). This type of asynchronous dynamics does not suffer from the pathologies 
of the noise source we had to assume above, but it does, of course, leave the realm of 
networks with continuous time dynamics to which the present contribution has been 
devoted. 
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